Easy Come - Easy Go Divisible Cash
نویسندگان
چکیده
Recently, there has been an interest in creating practical anonymous electronic cash with the ability to conduct payments of exact amounts, as is typically the practice in physical payment systems. The most general solution for such payments is to allow electronic coins to be divisible (e.g., each coin can be spent incrementally but total purchases are limited to the monetary value of the coin). In Crypto’95, T. Okamoto presented the first efficient divisible, anonymous (but linkable) off-line e-cash scheme requiring only O(1og n/) computations for each of the withdrawal, payment and deposit procedures, where A/ = (total coin value)/ (smallest divisible unit) is the divisibility precision. However, the zero-knowledge protocol used for the creation of a blinded unlinkable coin by Okamoto is quite inefficient and is used only at set-up to make the system efficient. Incorporating “unlinkable” blinding only in the setup, however, limits the level of anonymity offered by allowing the linking of all coins withdrawn-rather than a more desirable anonymity which allows only linking of subcoins of a withdrawn coin. In this paper we make a further step towards practicality of complete (i.e., divisible) anonymous e-cash by presenting a solution where all p r e cedures (set-up, withdrawal, payment and deposit) are bounded by tens of exponentiations; in particular we improve on Okamoto’s result by 3 orders of magnitude, while the size of the coin remains about 300 Bytes, based on a 512 bit modulus. Moreover, the protocols are compatible with tracing methods used for “fair” or “revokable” anonymous cash.
منابع مشابه
Cut Down the Tree to Achieve Constant Complexity in Divisible E-cash
Divisible e-cash, proposed in 1991 by Okamoto and Ohta, addresses a practical concern of electronic money, the problem of paying the exact amount. Users of such systems can indeed withdraw coins of a large value N and then divide it into many pieces of any desired values V ≤ N . Such a primitive therefore allows to avoid the use of several denominations or change issues. Since its introduction,...
متن کاملUnlinkable Divisible Electronic Cash
Recently, some divisible electronic cash (e-cash) systems have been proposed. However, in existing divisible e-cash systems, efficiency or unlinkability is not sufficiently accomplished. In the existing efficient divisible cash systems, all protocols are conducted in the order of the polynomial of logN where N is the divisibility precision (i.e., (the total coin amount)/ (minimum divisible unit...
متن کاملPractical Divisible E-Cash
Divisible e-cash systems allow a user to withdraw a wallet containingK coins and to spend k ≤ K coins in a single operation, respectively. Independent of the new work of Canard, Pointcheval, Sanders and Traoré (Proceedings of PKC ’15) we present a practical and secure divisible e-cash system in which the bandwidth of each protocol is constant while the system fulfills the standard security requ...
متن کاملPractical Anonymous Divisible E-Cash from Bounded Accumulators
We present an efficient off-line divisible e-cash scheme which is truly anonymous without a trusted third party. This is the second scheme in the literature which achieves full unlinkability and anonymity, after the seminal work proposed by Canard and Gouget. The main trick of our scheme is the use of a bounded accumulator in combination with the classical binary tree approach. The aims of this...
متن کاملDivisible E-Cash Systems Can Be Truly Anonymous
This paper presents an off-line divisible e-cash scheme where a user can withdraw a divisible coin of monetary value 2 that he can parceled and spend anonymously and unlinkably. We present the construction of a security tag that allows to protect the anonymity of honest users and to revoke anonymity only in case of cheat for protocols based on a binary tree structure without using a trusted thi...
متن کامل